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Stimulus visibility can be reduced by other stimuli that overlap the same region of visual space, a process known as masking. Here we
studied the neural mechanisms of masking in humans using source-imaged steady state visual evoked potentials and frequency-domain
analysis over a wide range of relative stimulus strengths of test and mask stimuli. Test and mask stimuli were tagged with distinct
temporal frequencies and we quantified spectral response components associated with the individual stimuli (self terms) and responses
due to interaction between stimuli (intermodulation terms). In early visual cortex, masking alters the self terms in a manner consistent
with a reduction of input contrast. We also identify a novel signature of masking: a robust intermodulation term that peaks when the test
and mask stimuli have equal contrast and disappears when they are widely different. We fit all of our data simultaneously with family of
a divisive gain control models that differed only in their dynamics. Models with either very short or very long temporal integration
constants for the gain pool performed worse than a model with an integration time of �30 ms. Finally, the absolute magnitudes of the
response were controlled by the ratio of the stimulus contrasts, not their absolute values. This contrast– contrast invariance suggests that
many neurons in early visual cortex code relative rather than absolute contrast. Together, these results provide a more complete descrip-
tion of masking within the normalization framework of contrast gain control and suggest that contrast normalization accomplishes
multiple functional goals.

Introduction
The stereotyped cytoarchitecture of the neocortex suggests that
similar neural circuitry, and therefore similar computations,
might be found across different areas of the brain (Creutzfeldt,
1977; Douglas and Martin, 2004). Divisive normalization is one
such computation in which excitatory inputs to a cell population
are modeled by polynomial terms that form the numerator of the
computational operator (Anderson et al., 2000; Miller and
Troyer, 2002; Kouh and Poggio, 2008). These responses are di-
vided, or “normalized”, by inhibitory inputs (Riesenhuber and
Poggio, 1999). At a descriptive level, normalization is successful
in explaining numerous visual perceptual phenomena, including
contrast adaptation (Greenlee and Heitger, 1988; Heeger, 1992),
pattern masking (Foley, 1994; Candy et al., 2001), attentional
modulation (Boynton, 2009; Reynolds and Heeger, 2009)—all of
which may be viewed as manifestations of gain control. Gain
control is an essential mechanism for adjusting a system’s sensi-
tivity for efficient (Schwartz and Simoncelli, 2001) and robust

(Carandini, 2007; Carandini and Heeger, 2011) representation of
the external world.

An important perceptual phenomenon in which gain control
plays a central role is masking. In masking, the detectability of a
stimulus is reduced by other stimuli presented to the same or
similar region of visual space (Legge and Foley, 1980). Masking is
prevalent because objects in the natural environment are inevita-
bly observed in context rather than in isolation. Neural correlates
of masking have been observed in single cells in visual cortex,
where the response to a preferred stimulus is reduced by the
superimposition of a second stimulus that by itself elicits little or
no response (Morrone et al., 1982; Bonds, 1989; DeAngelis et al.,
1992; Carandini, 2004). Masking, or “suppression,” can be so
prominent that the neural activity generated by a stronger stim-
ulus can completely dominate that of a weaker stimulus. This
behavior is a neural correlate of a winner-take-all (WTA) com-
putational operator (Kouh and Poggio, 2008). Busse et al. (2009)
showed that WTA behavior could be observed at a neural popu-
lation level and modeled by a divisive normalization process.

Here, we characterize masking using a frequency-domain
nonlinear analysis method and a neural population correlate of
masking obtained from source-imaged EEG. Two frequency-
tagged stimuli generate response components at frequencies that
are low-order sums and differences of the input frequencies. The
specific frequency components that are observed and their rela-
tive amplitudes depend very strongly on the underlying nonlin-
earity and comprise a “fingerprint” of this computation (Victor
and Shapley, 1980; Regan and Regan, 1988). Regan and Regan
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(1988) explored the effects of different forms of static nonlinearity,
including a sigmoidal nonlinearity, on the sum of two sinusoids.
They showed analytically that this resulted in equal second-order
difference and sum responses. Candy et al. (2001) used a frequency
tagging approach to study both iso-orientation and cross-
orientation masking in human visual evoked potentials (VEP).
They studied a limited range of input contrasts and found that
trends in the data were qualitatively consistent with predictions
of a normalization model. Here we varied input contrasts over a
wide range to obtain a more complete profile of masking re-
sponses that we used to test different parameterizations of the
divisive normalization model.

Materials and Methods
Observers. Ten neurotypical observers (4 female) with normal or
corrected-to-normal visual acuity participated. A local ethics review
board approved the recruitment and experiment procedures before the
start of the project.

Display and stimuli. Stimuli were displayed on a 19� monitor (Electron
Blue; LaCie) at a spatial resolution of 800 � 600 pixels, 72 Hz vertical
refresh rate, and mean luminance of 81 cd/m 2. The nonlinear voltage
versus luminance response of the monitor was corrected in software.
Stimuli were generated and presented using an in-house display system
(PowerDIVA) with high temporal precision. Subjects viewed the moni-
tor from a distance of 63 cm, giving a view angle of 32.3° � 24.2° (2.4� per
pixel).

Stimuli consisted of one or two superimposed random checkerboard
patterns, with each check measuring 12 � 12� (Fig. 1). To minimize EEG
signal cancellation and to thus improve the accuracy of source localiza-
tion, we presented the pattern in the lower right quadrant of the display.
The same checkerboard pattern was used throughout the experiment for
all subjects. In some of the trials, a second mask pattern was also present.
The mask pattern was of the same size as the original (test), generated
independently and superimposed on the test. The contrasts of the test
and mask were modulated sinusoidally from zero to some positive value
c, thus around a mean contrast of c/2. For the test, c was stepped from
0.5% to 47% in 10 equal logarithmic intervals in each trial. For the mask,
c was fixed at one of four values (0%, 5%, 10%, 20%) in each trial. The
frequencies of modulation were 5.14 Hz and 7.2 Hz for test and mask,
respectively. The interval between steps was 0.97 s (the smallest common
multiple of the period of the two input frequencies) for a total trial

duration of 9.7 s. Twenty repeats at each mask contrast (total of 80 trials)
were randomized.

Each trial began with a central fixation mark, followed by presentation
of the mask and test stimuli for 9.7 s. Observers’ attention was controlled
using a stream of letters shown at the center of the display, among which
a target letter was to be detected from distractors.

Steady-state VEPs recording and preprocessing. EEG signals were re-
corded using 128-channel HydroCell Sensor Nets (Electrical Geodesics).
Signals were recorded with a vertex physical reference, amplified with a
gain of 1000, bandpass filtered between 0.1 and 50 Hz, and digitized at a
sampling rate of 432 Hz. At the end of each experimental session, the 3D
locations of each sensor and of three fiducials (nasion, left and right
preauricular) were digitized using a Fastrack 3D digitizer (Polhemus).

Artifact rejection was processed off-line in two stages. In the first stage,
raw data were evaluated sample by sample to determine those that ex-
ceeded a threshold (�30 �V). Noisy channels that had �10% of the
samples exceeding the threshold were replaced by the average of the six
nearest neighbors. In a second stage, individual channels were evaluated
sample by sample, and epochs that contained large number of sensors
(�7) exceeding a threshold (�60 �V) were rejected. Typically, rejected
data corresponded to periods of eye movements or blinks. After artifact
rejection, the EEG was re-referenced to the common average of all the
sensors.

Scalp EEG activity was converted to cortical current density using a
method of EEG source reconstruction described in detail previously
(Cottereau et al., 2011). In brief, the method begins with boundary ele-
ment model of tissues in the head constructed from each subject’s MRI
scans. Visual areas were defined by a separate procedure based on reti-
notopic mapping using fMRI (Engel et al., 1997). Cortical activity in early
visual cortex (V1) was calculated using a L2 minimum norm solution
with sources constrained to the location and orientation of the cortex.
Additional constraints on source localization included the restriction to
the dorsal parts of the hemisphere contralateral to the stimulus and a
weighting scheme in which visual areas received twice the weight of
nonvisual areas.

Response waveforms in V1 were converted to the frequency domain
via a discrete Fourier transform with a resolution of 1.03 Hz. When
pooling across subjects, the responses were averaged coherently (i.e.,
taking into account both amplitude and phase).

Contrast response modeling. The response to the sweep of contrast
comprised a contrast response function (CRF). We extend a well estab-
lished description of the CRF—the hyperbolic ratio function (Naka and
Rushton, 1966; Albrecht and Hamilton, 1982)—to account for multiple
frequency components in our steady-state paradigm. This model de-
scribes the response of a neuron or a population having an accelerating
response nonlinearity whose input can be modulated by a divisive com-
ponent arising from the combined responses of all other neighboring
neurons (a gain pool). Previous normalization models of this type (Al-
brecht and Hamilton, 1982; Heeger, 1992; Carandini et al., 1997; Busse et
al., 2009) typically operate on a scalar input representing the stimulus
contrast and produce a scalar output representing the response ampli-
tude, as shown in Equation 1:

R � Rm

cn

cn � �n, (1)

where R is the response, c is the stimulus contrast, and Rm, n, and � are
parameters representing the response maximum and the minimum, the
exponent, and the contrast producing the half-maximal response, re-
spectively. We extend this model to incorporate temporal dynamics in
two stages. First, following Candy et al. (2001), we let the input be a time
series, representing the temporal modulation of stimulus contrast. The
output is also a function of time:

R�t� � Rm

�c�t�	p

�c�t�	q � �q, (2)

where c(t) is the temporal modulation of the stimulus contrast—in this
case, represented by the sum of the two input sinusoids. Notice that the
gain pool, represented in the denominator of Equation 2, is time-varying,

Figure 1. Random noise pattern used as visual stimulus. The pattern has a mean intensity of
0.5 (1 being white and 0 being black). Each pattern is multiplied by a temporal sinusoid
1⁄2cisin(2�fit), where ci and fi are the contrast and frequency, respectively, and added to a
uniform background of mean intensity of 0.5. Two patterns are superimposed by displaying
interleaved video lines.
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as neurons in the gain pool receive the same input as the neuron. In
addition, we allow the exponents of the excitation and inhibition com-
ponents, p and q, respectively, to be fitted separately (Foley, 1994; Chen et
al., 2001; Xing and Heeger, 2001; Peirce, 2007). To produce good fits to
the CRF at the high contrasts, it is necessary to allow � to vary with mask
contrast (Ross and Speed, 1991).

This model may be compared with another variant of normalization in
which the denominator term, the gain pool, is time independent (Bonin
et al., 2005) and reflects a spatiotemporal integration of local stimulus
contrast, clocal. This model is described by the following:

R�t� � Rm

�c�t�	p

�clocal�
q � �q, (3)

where clocal 
�cmask
2 � ctest

2 , and cmask, and ctest are the contrasts of the
mask and test, respectively (Carandini, 2004; Bonin et al., 2006).

The second modification in our model describes the temporal dynam-
ics of the gain pool response. In the Candy-style model (Eq. 2), there is no
temporal integration so that the response of the gain pool contains the
full temporal spectrum. In comparison, the Bonin-style model (Eq. 3)
integrates over space and time so that the gain pool response is a constant.
These are two ends of a continuum. To generalize, we allowed the tem-
poral integration window of the gain pool to be a free parameter. This
model is described by the following:

R�t� � Rm

�c�t�	p

f�t� � �q, (4)

where f(t) is a temporally filtered version of the gain pool response:

f(t) � [c(t)]q * h(t). (5)

The filter impulse response is assumed to be a

decaying exponential, h�t� �
1

�
e�t/�. This

represents a low-pass filter with a half-max cut-
off frequency of 1/�.

Model fitting was done by a numerical
search (MATLAB function lsqnonlin) to min-
imize the quantity:

�2 � �
i

�Ri � R̂i�
2

s2 (6)

where Ri is the response amplitude at the ith
combination of contrasts and frequency, R̂i is
the model prediction, and s is the standard er-
ror of the response.

Results
Responses to periodic stimuli are conve-
niently described by their frequency spec-
trum. An amplitude spectrum of the
steady-state VEPs (SSVEPs) recorded
from an example subject is shown in Fig-
ure 2. Here, to simplify the illustration,
both test and mask had a fixed contrast
modulation (i.e., no contrast sweep) and a
single channel centered on the occipital
cortex (Oz) is depicted. In response to
the test or mask alone (Fig. 2A,B), the
stimulus-driven response was precisely
identified in the spectrum, shown as large
peaks of activity at integer multiples of the
input frequencies (self terms; Fig. 2, red
and blue lines). When mask and test of
equal contrast were presented concur-
rently (Fig. 2C), self terms can be seen, as
well as additional stimulus-driven com-

ponents at frequencies equal to low-order sums and differences
of the stimulus frequencies �intermodulation (IM) terms; Fig. 2C,
green lines	. Finally, with different mask and test contrasts (e.g.,
mask four times the test contrast; Fig. 2D), the response closely
resembled that elicited by the stronger stimulus alone. Remark-
ably, although the test stimulus in both Figure 2B and Figure 2D
had the same contrast, its self terms components (nf2) were no-
tably absent in the presence of a stronger mask stimulus. More-
over, intermodulation terms were reduced to the noise level.
Hence, the winner-take-all behavior is clearly manifest in multi-
ple spectral components of the SSVEP responses.

Profiles of masking in frequency domain
We focused our analysis on signals from early visual cortex (V1)
because contrast representation is most thoroughly studied at
this level (Albrecht and Hamilton, 1982; Carandini et al., 2005).
To characterize the possible interactions between the test and
mask stimuli, we sampled combinations of test and mask over a
large range of relative contrast values and looked at the responses
corresponding to self and intermodulation terms (Regan and
Regan, 1988).

We first examined the self terms. The first harmonic responses
of all subjects were averaged coherently and the amplitude of the
mean response was plotted against the test stimulus contrast (Fig.
3A). Each of the CRFs in Figure 3 corresponds to a fixed mask
contrast. With increasing mask strength, the CRF was shifted
rightwards, consistent with a reduction in the effective contrast of

Figure 2. Amplitude spectrum of the SSVEPs recorded at Oz. The labels denote the frequency of the response components in
terms of multiples of the input frequencies. A, B, Mask ( f1) and test ( f2) stimulus presented separately at 10% contrast. The
stimulus-driven components are clearly greater than the background EEG and are seen at integer multiples of the input frequencies
f1 (blue) and f2 (red). In these panels, the resolution of the spectrum is 0.103 Hz, 10 times better than the resolution available in the
main experiment, because the analysis window is 10 times as long. Note the precise isolation of the SSVEPs to specific frequencies
in the spectrum. C, Concurrent presentation of mask and test of equal contrast (10%). Responses corresponding to harmonics of the
stimulus frequencies are present, in addition to intermodulation terms (green), some of which are labeled. D, Concurrent presen-
tation of the mask and test, with the mask contrast at 40% and the test contrast at 10%. The pattern of the spectrum closely
resembles the responses elicited by the mask stimulus alone (cf. A). The frequencies corresponding to the test stimulus are notably
absent even though the test stimulus is shown at the same contrast in both B and D.
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the test. In turn, the mask response was reduced by the test stim-
ulus (Fig. 3B)—in the presence of increasing test contrast, the
mask response decreased monotonically. These patterns are con-
sistent with previous studies of masking (Freeman et al., 2002;
Busse et al., 2009).

Next, we examined the second order ( f1 � f2) component
because it was the dominant IM response in our data (Fig. 2C). In
the same manner as the self terms, the magnitude of this compo-
nent in response to combinations of test and mask contrast is
shown in Figure 3C. Not surprisingly, IM response was absent
when the test was presented alone (Fig. 3, red curve). When both
test and mask were present, the response amplitude as a function
of test contrast was nonmonotonic: it increased with test contrast
but peaked and decreased thereafter to baseline. When test con-
trast was much greater than the mask contrast, IM response was
negligible, as though only one stimulus was present—a winner-
take-all situation. The peak of the response occurred when the
test and mask contrasts were equal (Fig. 3C, arrows). Hence, an
additional signature of WTA is the absence of IM components.
This dissociation is revealing since both WTA and the generation
of IM responses might have depended on the same nonlinear
mechanism.

Finally, the response at the difference intermodulation fre-
quency ( f1 � f2) is shown in Figure 3D. The amplitude of the
response at this frequency was smaller than that at the sum fre-
quency. In Figure 3, C and D, the response with mask contrast of
zero (red curves) can be taken as a measure of the noise level
because no IM response is expected. Although the noise level was
higher at the difference than the sum frequency, a signal of com-
parable magnitude to that measured at the sum frequency would
have been readily detectable. In fact, none of the mask contrasts
elicited a response that rose above the noise level (Fig. 3D). This
proved to be an important constraint on our models, as we dem-
onstrate below.

In summary, we find that components of the spectrum carry
distinct signature of visual masking. In the next section, we ad-
dress whether the normalization process can account for these
results.

We should point out that the drop-off to zero of the IM term
is qualitatively different from the small roll-off of test self terms at
high contrasts (Fig. 3A). The latter is known as response super-
saturation, reported in some visual neurons (Albrecht and Ham-
ilton, 1982; Li and Creutzfeldt, 1984; Peirce, 2007) and in human
VEP (Tyler and Apkarian, 1985; Burr and Morrone, 1987). We
note in passing that supersaturation is not attributable to a slow
adaptation process (Carandini and Ferster, 1997) because super-
saturation is present at the very beginning of each trial (data not
shown).

Dynamics of the gain pool
Previous instantiations of normalization models could not pre-
dict the full range of results presented above, in part because of
limitations in the intended scope of these models with respect to
either temporal dynamics or input contrast. Here, we develop a
variant of the normalization model that explains the full range of
frequency-domain responses.

Following Candy et al. (2001), we constructed a model in
which the input corresponded to the temporal waveforms of the
contrast modulation. As the output of the model only depends on
the instantaneous input, we call this the memory-less model. We
fit this model to the first-order self terms ( f1, f2) and the second-
order sum IM term ( f1 � f2) for all mask contrasts simultane-
ously (Fig. 4A; 120 data points; for model parameter values, see
Table 1) because these terms contained most of the response
signals. The predictions (Fig. 4A, lines) accounted for 94% of the
variance in the data and captured the qualitative features of the
masking behavior in the self terms (Fig. 4A, first and second
columns); that is, the curves shifted laterally with mask contrast.
However, the predictions depart from the data with respect to the
sum IM term, specifically because the peak of the response did
not fall on the point of equality (Fig. 4A, third column).

In an alternative normalization model (Bonin et al., 2005), the
gain pool response is constructed from spatiotemporal integra-
tion of the stimulus over a suppressive field. Contrary to the
memory-less model, this one has effectively long-memory. The
results of fitting this model to our data are shown in Figure 4B.
Again, the model captured the shifting of the self term responses
as mask contrast increased (93% of the variance explained).
However, for the sum IM term, the model predicted responses
that were much smaller than observed.

The Candy and Bonin models differ in the extent of temporal
integration in the gain pool signal. In the Candy model, this
integration window is infinitesimally short or absent, while in the
Bonin model, the window is effectively very long. To assess the
effect of the duration of integration, we fitted it as an additional
model parameter (see Materials and Methods, above). The best
fitting parameters had a time constant of 26 ms, and the model
(short-memory) produced excellent fit to the data, accounting
for 96% of the variance (Fig. 4C).

Following Cavanaugh et al. (2002), we characterized the
goodness-of-fit of these three models using a normalized � 2 mea-
sure, which takes into account the number of model parameters:

�N
2 �

�2

df
(7)

where � 2 is given by Equation 6, df is the number of degrees of
freedom in the model. The best fitting model is the one with the
lowest �N

2 . The normalized � 2 for the memory-less, long-
memory, and the short-memory models are 2.26, 2.51, and 1.47,
respectively. All three models show similar performance in pre-

Figure 3. Group mean (n 
 10) of cortical current amplitude in V1. Error bars denote SEM.
Colors denote mask contrast: red, 0%; black, 5%; blue, 10%; green, 20%. A, Response to the test
stimulus (measured at the frequency f2). B, Response to the mask stimulus (measured at the
frequency f1). C, Amplitude of the second-order sum IM term (measured at the frequency f1 �
f2). Arrows indicate the point of equality between test and mask contrasts. D, Amplitude of the
second-order difference term (measured at the frequency f1 � f2).
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dicting the self terms; however, the short-memory model best
captures the characteristics of the intermodulation term. For the
sum ( f1 � f2) term, the short-memory model correctly identifies
the shift of the peak of the function with mask contrast. Further-
more, only this model predicts an asymmetry between the sum
and difference IM responses (Fig. 4, right). These results demon-
strate that inclusion of the intermodulation terms is critical to
constraining the model.

Discussion
Few previous studies have used the frequency-tagging technique
to study masking (Burr and Morrone, 1987; Bonds, 1989; Ross
and Speed, 1991; Candy et al., 2001; Bonin et al., 2005; Busse et
al., 2009). Only Candy et al. (2001) have studied the intermodu-
lation term that we found to be most effective in discriminating
among models. The other studies focused on the self terms. We
have shown that the combination of spectral components of a
neural population response carry distinctive signatures of con-
trast masking and gain control. Specifically, second-order IM
terms in SSVEP is maximal when two inputs are of the same
contrast and negligible when they are markedly different. In
comparison, the self terms have a different profile—the response
increases through the point of equality. In addition, the IM terms
are critical to constraining a model for describing masking and
gain control. Our results are well described by a divisive normal-

ization model that includes additional temporal integration in
the generation of the gain pool.

The findings presented here do not depend critically on EEG
source imaging. Data from a single electrode, Oz, referenced to
the average are very similar to V1. This is not surprising since we
have focused on contrast masking, an early visual system process,
and Oz largely reflects the activity of cells in V1 (Ales et al., 2010).
However, in other paradigms it may be desirable to examine
additional visual areas and our technique can be extended to this
situation easily. We also note that in some people, the occipital
lobe extends ventrally in a nonstereotypical manner and elec-
trode Oz will then sit over more dorsal visual areas, such as V3a.
Our technique eliminated potential errors of this type.

Dynamics of the gain pool
The temporal dynamics of the gain pool are strongly constrained
by the observed data. Modeling shows that a temporal integration
stage with a time constant of �26 ms must be applied to the
normalization signal to fit the data. This suggests that normaliza-
tion is rapid, but not instantaneous. There are some lines of sup-
port in the literature. First, there is evidence for temporal
integration in retinal gain control mechanisms (Shapley and Vic-
tor, 1981; Victor, 1987), and second, the proposed temporal in-
tegration is compatible with the delayed onset of suppression
observed in the cortex (Bair et al., 2003; Smith et al., 2006). In the

Figure 4. A–C, Fitting of three variants of the normalization model (A, memory-less; B, long-memory; C, short-memory) to the contrast response data from Figure 3. Colors correspond to
different mask contrast: red, no mask; black, 5%; blue, 10%; green, 20%. All three models show similar goodness-of-fit in the mask (first column) and test (second column) terms. However, the
short-memory model best captures the characteristics of the intermodulation terms, including the peak of the sum response function when the test and mask contrasts are equal (third column) and
the diminished signal/noise at the difference frequency relative to the sum (fourth column).

Table 1. Values of fitted parameters

Rmax �mask_1 (%) �mask_2 �mask_3 �mask_4 p q � (ms)

Memory-less 0.05 (0.02, 0.07) 3.5 (1.7, 5.3) 7.1 (4.4, 9.7) 9.2 (5.9, 12.4) 17 (12, 21) 1.49 (1.2, 1.8) 1.52 (1.2, 1.8) n/a
Long-memory 0.08 (0.03, 0.12) 3.9 (2.3, 5.4) 8.2 (6.1, 10) 11 (7.9, 13) 15 (11, 19) 1.6 (1.4, 1.8) 1.9 (1.7, 2.1) n/a
Short-memory 23 (12, 34) 37 (8, 66) 66 (23, 111) 81 (30, 133) 128 (51, 204) 2.2 (1.7, 2.7) 2.4 (1.9, 2.9) 26 (16, 36)

Values in parentheses are 95% confidence intervals.
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retina, Victor (1987) proposed an elegant
model of gain control comprised of a se-
ries of low-pass filters, an adaptive high-
pass filter, and spike transduction. The
high-pass filter was characterized by a
time constant, which in turn depended on
a neural measure of stimulus contrast.
Victor (1987) showed that a strictly linear
model and a quasilinear (with long inte-
gration time) model were both inade-
quate. Instead, the best-fitting model
required a time constant in the range of 5
to 25 ms.

The variants of normalization models we discussed in this
paper make predictions for the onset of suppression. An infini-
tesimally short integration period (Candy et al., 2001) predicts
that the gain pool signal is fully developed at the outset, resulting
in no delay of the suppression effect relative to the response onset.
Conversely, a finite integration constant predicts a delay in the
onset of suppression. In macaque V1, neurons show a delay in
response suppression relative to the earliest response to a visual
stimulus (Bair et al., 2003; Smith et al., 2006). There are two
qualitatively different types of suppressive interactions: overlay
and surround suppression (Petrov et al., 2005). The delay in over-
lay suppression was 13 ms on average relative to response offset
(Smith et al., 2006). Surround suppression was slower than over-
lay suppression by an additional 12 ms (Smith et al., 2006). The
large spatial extent of our stimulus likely engaged both suppres-
sion mechanisms, and the estimate of temporal integration is
consistent with the delay of suppression measured in single cells.

Where might be the neural loci for this dynamic gain control?
Studies using pairs of oriented gratings revealed that the second-
order intermodulation response depends on the relative orienta-
tion of the stimulus (Regan and Regan, 1987; Candy et al., 2001;
Baker et al., 2011). This implies that an orientation-sensitive
mechanism is involved in the generation of the IM response.
Furthermore, intermodulation response can be obtained from
component gratings presented dichoptically, implying that IM
response are generated after inputs from the two eyes have been
combined (Brown et al., 1999; Norcia et al., 2000). However,
these results do not rule out a precortical contribution to shaping
the IM response. In particular, a recent model of binocular inter-
action posits that excitatory and inhibitory interactions between
eyes take place in cortical and precortical channels, respectively
(Zhang et al., 2011). If IM response reflects the excitatory inter-
action, this model could account for the dissociation between
masking and IM response in our data, i.e., the absence of IM
when masking was strong (Fig. 3), because strong inhibition of
one input by the other at a precortical site precludes downstream
excitatory interactions.

One limitation of our model is its relative deficiency in pre-
dicting the phase of SSVEP responses. While the short-memory
model predicts some aspects of the measured data, such as a
decrease in phase-lag with increasing contrast that the memory-
less and long-memory models do not, it does not correctly pre-
dict absolute phase correctly. Several factors complicate the
interpretation of phase in our dataset. Unlike amplitude, phase
measurement of weak signals yields unpredictable values and so
the phase of responses to low-contrast inputs is poorly defined.
Furthermore, intersubject variability can produce indeterminate
confidence bounds (i.e., �2 pi) because of the circular nature of
phase data. Finally, response phase is dependent on conduction
delays in the visual pathways, which we did not include in the

model. A more detailed model of membrane conductances, such
as shunting inhibition (Carandini and Heeger, 1994; Carandini et
al., 1997; Sit et al., 2009) may be a way to augment the model.
Nonetheless, the modeling here does demonstrate that it is nec-
essary to consider the dynamics of the gain control pool to ac-
count for the interactions underlying masking.

Winner-take-all, invariance, and normalization
The normalization model exhibits a variety of behaviors based on
the relative input contrasts. On the one hand, when the test and
mask contrast are different, a winner-take-all operation is appar-
ent (Fig. 2). On the other hand, when their contrasts are similar,
gain control is apparent from the shift of the contrast response
functions (Fig. 3). The purpose of gain control may be to adjust
the sensitivity such that the response remains invariant with re-
spect to changes in the environment.

In support of this, we identify a contrast– contrast invariance
(Fig. 5), which appears to be a strong form of contrast normal-
ization as traditionally studied with psychophysical techniques.
In the psychophysical literature, the appearance of a test patch
depends on the relative contrast of the patch and its surround
(Ejima and Takahashi, 1985; Chubb et al., 1989; Cannon and
Fullenkamp, 1991; Xing and Heeger, 2000). Relative contrast is
known to affect the sensitivity of stereo depth, motion, and ver-
nier perception in that maximal sensitivity is achieved when the
contrast ratio between corresponding images is one (Halpern and
Blake, 1988; Stevenson and Cormack, 2000). In Figure 5, we show
that neural responses depend only on the ratio of the test and
mask contrasts over a very wide range of absolute contrasts.

Most strikingly, sensitivity to the test (Fig. 5, left) is precisely
centered on a contrast ratio of 1 so that it is positioned to give the
maximum differential response. This contrast-contrast invari-
ance was also evident in the second-order IM response. The mag-
nitude of the IM term is centered so that at a ratio of 1, the two
signals are maximally mixed and, as the ratio deviates from unity,
WTA behavior emerges (Fig. 5, right). This behavior may provide
a means for selection between competing responses. Together,
these data show that at a population level, neurons in visual cor-
tex operate on a representation of relative rather than absolute
contrast and that this invariance can be understood in the
framework of normalization provided one takes into account
its dynamics.
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